AVALIAÇÃO DAS PROPRIEDADES FÍSICAS E QUÍMICAS DE VIDROS ALUMINOSSILICATOS CONTENDO HÓLMIO

Eraldo C. Barros Filho¹, Frank Ferrer Sene², José Roberto Martinelli³ ¹ Prof. Dr. da FATEC-SP ² Prof. Dr. do Centro Tecnológico da Marinha do Brasil ³ Prof. Dr. do Instituto de Pesquisas Energéticas e Nucleares (in memoriam)

e-mail eraldo.barros@fatecsp.br, frank.sene@ctmsp.mar.mil.br

Resumo

O tratamento do carcinoma hepatocelular ou câncer de fígado primário é um desafio terapêutico. Uma vez que o crescimento dos nódulos ocorre de modo lento e assintomático, levando a um diagnóstico tardio, somente 10 a 15% dos pacientes são elegíveis aos métodos de tratamento convencional, tais como a cirurgia. Tratamentos alternativos são necessários para os pacientes inoperáveis e a radioterapia interna seletiva é uma opção. Nesta terapia, microesferas contendo um radionuclídeo em sua estrutura são inseridas por meio de um cateter na artéria hepática e migram até o fígado, apresando-se nas arteríolas que alimentam o tumor. As células cancerosas são aniquiladas devido ao bloqueio da alimentação e à deposição de dose de radiação. Neste trabalho, foram produzidos vidros aluminossilicatos contendo hólmio para produção de microesferas para esta aplicação e foram avaliadas as propriedades físicas e químicas dos vidros obtidos visando à aplicação em radioterapia interna seletiva.

1. Introdução

A radioterapia interna seletiva, técnica radioterápica localizada que utiliza microesferas para o tratamento do carcinoma hepatocelular, faz uso do 90Y como radionuclídeo emissor β puro. Resultados satisfatórios já foram alcançados [1-4], porém o uso do 90 Y apresenta algumas limitações como a impossibilidade de obtenção de imagens, sendo necessário utilizar para tal fim um macroagregado de albumina marcado com tecnécio (^{99m}Tc-MAA) para simular as microesferas. O imageamento do tumor é importante a fim de verificar o "desvio para o pulmão" (lung shunt) e determinar os pacientes selecionáveis para submissão desta técnica e também para avaliação da biodistribuição da dose terapêutica no tecido lesionado [5]. A substituição do ⁹⁰Y pelo ¹⁶⁶Ho como radionuclídeo presente na composição do vidro evitaria esta limitação, pois, além do hólmio possuir todas as propriedades desejáveis para aplicação desta terapia (meia vida relativamente curta, Energia $\beta > 1$ Mev, seção de choque alta de 64b), ele também é altamente paramagnético e é emissor concomitante β^- e γ , possibilitando imagens por tomografia computadorizada por emissão de fótons e por ressonância magnética [6]. Microesferas poliméricas contendo hólmio foram desenvolvidas e mostraram

resultados promissores [7-10]. O desenvolvimento de microesferas de vidro contendo hólmio traria algumas vantagens em relação às poliméricas como maior estabilidade mecânica e química, maior resistência à radiólise e simplicidade no processo de produção. Neste trabalho, foram produzidos vidros contendo hólmio e foram avaliadas as propriedades físicas e químicas destes vidros, utilizando-se espectrometria de fluorescência de raios X (EDX) e difração de raios X (DRX). Foram determinadas a densidade e a viscosidade destes vidros e foram realizados testes de durabilidade química em água destilada.

2. Materiais e Métodos 2.1 Materiais

Vidros aluminossilicatos contendo hólmio foram produzidos a partir da fusão de misturas de Al_2O_3 , SiO_2 , MgO e Ho_2O_3 . Quatro amostras foram produzidas contendo 0, 5%, 25% e 37% em massa de Ho_2O_3 e com composições estequiométricas respectivamente iguais a: $(100-x-y-z)SiO_2.(x)Al_2O_3.(y)MgO.(z)Ho_2O_3$ (x= 10, 9.5, 9, 7; y= 40, 35.8, 35; z= 0, 1, 6, 8)% mol baseadas no diagrama de fase ternário da figura 1.

Figura 1: Diagrama de fase a 1550°C de MgO – SiO₂ – Al2O₃[11]

Essas amostras foram chamadas de ASHo_0%, ASHo_5%, ASHo_25% e ASHo_37%, conforme o teor, em massa, de Ho_2O_3 adicionado, respectivamente. A mistura do material de partida foi realizada durante 20

minutos com o auxílio de um pistilo e gral de vidro silicato e a fusão foi realizada em um forno elétrico (Lindberg modelo Blue M) com taxa de aquecimento de 10°C/min até a temperatura final de 1550°C, utilizandose um cadinho de alumina. O líquido foi mantido nesta temperatura durante 2 horas para homogeneização e afinagem, e agitado a cada 30 minutos usando uma barra de sílica. O líquido foi vertido em moldes de aço inoxidável, obtendo-se barras solidificadas com dimensões de 10x10x50mm³. Estas barras foram recozidas à temperatura de 770°C para alívio das tensões e cortadas (para testes de durabilidade química) e maceradas e moídas em um moinho vibratório com esfera de tungstênio (Pulverizette) para as demais análises. Peneiras de aço inoxidável (Abronzinox) foram utilizadas para a separação das partículas na faixa granulométrica entre 45μ m $<\Phi$ $<63\mu$ m.

2.2 Métodos

2. 2. 1 Viscosidade

A curva de viscosidade em função da temperatura foi obtida através da técnica de prolongamento de fibras. Fibras de vidro foram obtidas por puxamento manual e estas foram inseridas em um forno tubular (Gold Furnace Thermcraft) em uma zona quente de 20 cm com temperatura aproximadamente constante e submetidas a uma carga de 0,196 N. Foram analisadas na faixa de 825°C até 920°C, com intervalos de 10°C.

2. 2. 2 Espectrometria de fluorescência de raios X por energia dispersiva (EDX)

A análise química das amostras foi realizada por espectrometria de fluorescência de raios X por energia dispersiva, utilizando-se um aparelho Shimadzu modelo EDX-720. As amostras foram analisadas em vácuo na forma de pó e os colimadores utilizados possuíam diâmetro de 5mm e 10mm. Um filme de polipropileno de 5 μ m de espessura foi utilizado durante a realização das medidas. Foram obtidas cinco análises e o resultado foi considerado a média dos mesmos.

2. 2. 3 Determinação da densidade

A densidade das amostras foi determinada utilizando-se o método de picnometria a gás hélio (Quantachrome model ultrapycnometer 1000). A pressão submetida foi de 17 psi e a massa analisada era de 1,4g para todas as amostras. Foram realizadas 10 análises e o resultado foi considerado a média dos mesmos.

2. 2. 4 Difração de raios X

As amostras foram analisadas em um difratômetro Rigaku modelo multiflex, fazendo-se uso do método do pó. A radiação utilizada para análise foi CuK α , a tensão de 40 kV e corrente elétrica de 20mA. Os ângulos varridos foram de 10° até 90° (velocidade 2° / min).

2. 2. 5 Teste de Durabilidade Química

Foram analisadas 3 amostras com dimensões de 0,1x1x1cm³ preparadas a partir de barras de vidros previamente recozidas à 770°C, cortadas em uma cortadora isomet modelo 1000, utilizando-se um disco de diamante mantido em banho de um agente refrigerante (água destilada) e, posteriormente, foram lixadas progressivamente com lixas de carbeto de silício com granulação 240 e 420 mesh. As amostras foram imersas em um extrator soxhlet conectado a um condensador de bolas e a um balão *Pyrex* contendo 100 ml de água destilada e mantidas a 90°C por uma manta elétrica no período de 14 dias. A massa das amostras foi determinada nos intervalos de 1, 3, 7 e 14 dias.

A taxa de dissolução, D_R , foi calculada utilizando-se a equação abaixo:

$$D_{R} = \Delta W / A . t \tag{1}$$

onde A é a superfície total da amostra (cm²), t o tempo (dia) em que a amostra permanece imersa na solução a 90°C e Δ W é a diferença de massa entre a massa inicial (g) e a massa no tempo t (g). O ensaio foi baseado na norma MCC-1P.

3. Resultados e Discussão 3.1 Viscosidade

A viscosidade em função da temperatura foi determinada para as amostras ASHo_5%, ASHo_25% e ASHo_37%. Na figura 2 é mostrado o log da viscosidade em função da temperatura.

Figura 2: Log da viscosidade em função da temperatura de vidros aluminossilicatos contendo hólmio.

viscosidades As destes vidros são altas como comparadas а outros sistemas vítreos borossilicatos ou fosfatos, correspondendo ao tipo de ligação química entre os tetraedros formados pelo oxigênio, silício e alumínio. Notou-se que o aumento da quantidade de óxido de hólmio presente no vidro diminui sua viscosidade, o que pode estar relacionado com as quebras de ligações cross-over propiciadas pelo aumento do óxido de hólmio.

3.2 Espectrometria de fluorescência de raios X por energia dispersiva (EDX)

As análises das composições químicas dos vidros estudados foram realizadas por espectrometria de fluorescência de raios X. Na Tabela I são mostrados os valores encontrados:

Componente	ASHo 0%	ASHo 5%	ASHo 25%	ASHo 37%
SiO ₂	61,8 (6)	54,2 (8)	41,5 (9)	33,3 (7)
Al ₂ O ₃	22,2 (5)	19,7 (3)	17,2 (9)	14,5 (8)
MgO	15,7 (6)	17,1 (5)	17,18(26)	14,20(11)
Ho ₂ O ₃	-	7,5(1,2)	19,8 (4)	32,8 (7)
Lu ₂ O ₃	-	0,94(18)	1,2 (3)	2,03 (9)
CaO	0,3 (3)	0,31 (7)	0,57 (14)	0,183(16)
Fe ₂ O ₃	0,030(10)	0,16(12)	-	-
Na ₂ O	-	-	2,4 (7)	2,99 (14)

Tabela I: Composição química dos vidros obtidos por EDX

A diminuição da quantidade de Ho_2O_3 em relação à composição nominal nas amostras ASHo 25% e ASHo 37% deve-se à presença de impurezas neste componente como Na₂O e Lu₂O₃. Nota-se uma diferença entre a composição nominal e a real, devido, provavelmente, à vaporização dos reagentes, à interação do material de partida com o cadinho ou à alta higroscopicidade dos materiais precursores.

3.3 Difração de raios X

Foram realizadas análises de difração de raios X e os resultados encontrados estão reportados na figura 3:

Figura 3: Difração de raios X dos vidros contendo hólmio.

Não foram observados picos de cristalização em nenhuma das amostras do vidro estudado. A cristalização deve ser evitada, pois, em geral, materiais vítreos apresentam durabilidade química superior aos materiais cristalinos de mesma composição e a formação de regiões cristalinas poderia originar defeitos mecânicos nas microesferas.

3.4 Densidade dos vidros

Os valores de densidade dos vidros são mostrados na Tabela II.

Tabela II: D	Densidade	dos	vidros
--------------	-----------	-----	--------

Vidro	Densidade(g/cm3)
ASHo 0%	2,69 (3)
ASHo 5%	2,71 (12)
ASHo 25%	3,20 (8)
ASHo 37%	3,92 (3)

Nota-se o aumento da densidade dos vidros na medida em que se aumenta a quantidade de Ho_2O_3 contido na estrutura do vidro. Esse aumento está relacionado à massa atômica do elemento Ho. Os valores encontrados são bastante promissores, pois se assemelham aos valores de densidade dos vidros utilizados na produção das tradicionais microesferas vítreas, que contêm ⁹⁰Y fabricadas pela empresa canadense Nordion.

3.5 Teste de Durabilidade Química

A durabilidade química dos vidros foi avaliada por testes de lixiviação e o resultado está mostrado na figura 4 e na tabela III.

Figura 4: Perda de massa normalizada em função do tempo.

Tabela III: Taxa de dissolução de vidros aluminossilicatos contendo hólmio em função do tempo de imersão à 90°C.

Dr(g/cm ² .min)					
t(dia)	ASHo 5%	ASHo 25%	ASHo 37%		
1	6,2 (0,2)x10 ⁻⁷	8,4 (0,3)x10 ⁻⁸	1,64 (0,05)x10 ⁻⁸		
3	3,0 (0,1)x10 ⁻⁶	1,20 (0,05)x10 ⁻⁷	2,7 (0,1)x 10 ⁻⁸		
7	2,9 (0,1)x10 ⁻⁶	2,6 (0,1)x10 ⁻⁶	1,86 (0,05)x10 ⁻⁸		
14	2,1 (0,1)x10 ⁻⁶	9,6 (0,3)x10 ⁻⁷	1,53 (0,05)x10 ⁻⁸		

Os vidros estudados possuem baixa taxa de dissolução comparados a outros sistemas vítreos como vidros de janelas (DR= 10^{-5} g/cm² .min). Também notou-se que o aumento da quantidade de Ho₂O₃ na estrutura do vidro reduz a taxa de dissolução e a perda de massa normalizada, mostrando que há um aumento

da durabilidade química de vidros contendo maiores teores de óxido de hólmio em sua estrutura.

4. Conclusões

Foi possível produzir vidros aluminossilicatos contendo diferentes quantidades de óxido de hólmio em sua constituição e caracterizá-los para potencial produção de microesferas de vidros utilizadas em radioterapia interna seletiva. Os vidros produzidos possuem propriedades físicas e químicas que os habilitam para serem usados no tratamento radioterápico. A composição ASHo_37% foi aquela com melhores propriedades, apesar da densidade ser um pouco superior à dos vidros utilizados para produção das tradicionais microesferas de vidro fabricadas pela empresa Nordion. Propõem-se que estas novas composições de vidro aluminossilicato contendo hólmio sejam usadas para produção de microesferas de vidro utilizadas em radioterapia interna seletiva.

Agradecimentos

À instituição International Atomic Energy Agency (IAEA), pelo apoio financeiro, `a CAPES pela bolsa concedida ao autor Eraldo Cordeiro Barros Filho durante o doutoramento e ao Prof. Dr. José Roberto Martinelli que participou ativamente deste trabalho com preciosas contribuições e que infelizmente nos deixou no ano de 2014.

Referências bibliográficas

[1] G. Nace, T. C. Gamblim – "90-Yttrium Microsphere Radioembolization in the Treatment of Primary and Metastatic Liver Tumors" - US Gastroenterology – Touch Briefings – (2008).

[2] P. Hilgard, S. Muller, G. Gerken, G. Antoch – "Radioembolization with Yttrium-90 Microspheres for Hepatocellular Carcinoma – Method and Results" – European Gastroenterology and Hepatology Review – Touch Briefings – (2010).

[3] E. Garin et al. – "First experience of hepatic radioembolization using microspheres labelled with yttrium-90 (TheraSphere): practical aspects concerning its implementation" – Eur. J. Nucl. Med. Mol. Imaging (2010) 37:453–461.

[4] R. Salem, L. Kulik, R. Murthy – "Radioembolization with yttrium-90 microspheres for the treatment of hepatocellular carcinoma and liver metastases" – US Gastroenterology Review – Touch Briefings – (2007).

[5] H. Poorbaygi et al – "Production of glass microspheres comprising 90Y and 177Lu for treating of hepatic tumors with SPECT imaging capabilities" – Applied Radiation and Isotopes – Elsevier – (2011).

[6] J. A. Seppenwoolde et al – "Internal Radiation Therapy of Liver Tumors: Qualitative and Quantitative Magnetic Resonance Imaging of the Biodistribution of Holmium-Loaded Microspheres in Animal Models" - Magnetic Resonance in Medicine 53:76–84 (2005).

[7] J. F. W. Nijsen et al – "Holmium-166 radioembolization for the treatment of patients with

liver metastases: design of the phase I hepar trial" - Journal of Experimental & Clinical Cancer Research, 29:70 (2010).

[8] J. F. W. Nijsen et al – "**Characterization of poly**(**L-lactic acid**) **microspheres loaded with holmium acetylacetonate**" - Biomaterials 22 – 3073-3081 – (2001).

[9] J.F.W. Nijsen et al – "Influence of neutron irradiation on holmium acetylacetonate loaded poly(l-lactic acid) microspheres" - Biomaterials 23 -1831–1839 - (2002).

[10] M. A. D. Vente et al – "Holmium-166 poly(Llactic acid) microsphere radioembolisation of the liver: technical aspects studied in a large animal model" - Eur Radiol 20: 862–869 - (2010).

[11] Figura retirada do site http://www.factsage.com